

Large Pump System Design

What's Different?

- Multi-tank design
- Multi-pump
- Multi-zone
 - Dispersal fields of varying sizes (non-symmetrical)
- Chemical feed
- Custom telemetry
- HMI screens

Tank Sizing:

• Emergency storage

- Soffit to high level alarm
- May be dictated by permit/local regs

Tank Sizing (cont):

• Retention time

Type 1 , Residential quality waste ³ (includes apartments, condos, mobile home parks, municipal, planned communities, subdivisions, work camps)	n/a	2	2× design max. day flow (1P + 1A)	n/a
Type 2 , Primarily black water waste ^{4,5} (includes airport facilities, campgrounds, fire depart- ments, golf courses, marinas, offices, parks, public toilets, rest areas, RV parks ⁵ , ski resorts, visitor centers)	3	3	3× design max. day flow (2P + 1A)	n/a

Tank Sizing (cont):

Flow modulation

with Surge Flows • Flows and primary treated effluent quality are heavily dependent on the facilities (e.g., schools with cafeterias and shower facilities vary significantly from those without)	 With appropriate primary treatment, primary-treated effluent typically ranges from: BOD₅ 300-500 mg/L TSS 80-250 mg/L TKN 90-150 mg/L
--	---

PVU Selection:

• Dimensions – larger, multiple pump clusters

- Inverts
- MLL
- **60-70%**

Float Settings:

- HLA
- OVR
- Timer on/off
- Low level/RO

Timer Settings:

- What's my design flow?
- What's my peak flow?
- What's my dose? (permitted)
- Pump GPM? (actual)
- How do we spread this flow out over a 24hr period?

Dispersal Field:

- Considerations:
 - Gravity (D-Box)
 - Pressurized & Shallow Subsurface
 - Uneven terrain making zones asymmetrical?
 - Zones at different elevations?
 - Is the system curve the same for all zones dosed?
 - Drip
 - Dosing & Flush Cycles
 - Emitter type

Zoning Options, Considerations & Pitfalls

Zoning Options, Considerations & Pitfalls

- Automatic distributing valve & how it operates
- Valve monitoring options

Figure 2: Orenco Distributing Valve Assembly (6000 Series Valve)

• Liquid flowing through the valve assembly must pass through fairly small openings and make several changes in direction. Because of this, headlosses through the valve assembly are fairly high. Table 1 gives the headloss equations for several different assemblies and Figure 3 shows the graphical representations of these equations. Orenco recommends that highhead turbine pumps be used to pressurize the valve assemblies to ensure enough head is available for proper system operation. High-head turbine pumps are also recommended because the use of a distributing valve usually requires more frequent pump cycling. The high-head turbine pumps are designed for high cycling systems and will outlast conventional effluent pumps by a factor of 10 or more in a high cycling mode. Furthermore, the high-head turbine pump intake is 12 inches or more above the bottom of the pump and tends to prevent any settled solids from being pumped into the distribution valve and obstructing its operation. A minimum flow rate through the distributing value is required to ensure proper seating of the rubber flap disk. Minimum flow rates for the various models are given in Table 1.

• Let's examine some physical valves to better understand how they work. (hands on exercise)

Table 1. Automatic Distributing Valve Assembly Headloss Equations

Model Series	Equation	Operating Range (gpm)
V4400A	$H_L = 0.085 \text{ x } Q^{1.45}$	10 - 40
V4600A	$H_L = 0.085 \text{ x } Q^{1.58}$	10 - 25
V6400A	$H_L = 0.0045 \text{ x } Q^2 + 3.5 \text{ x } (1 - e^{-0.06Q})$	15 - 70
V6600A	$H_L = 0.0049 \text{ x } Q^2 + 5.5 \text{ x } (1 - e^{-0.1Q})$	15 - 70

Flow (gpm)

Figure 3: Automatic distributing valve assembly headloss curves

Pump/System Curve:

- Critical to system reliability
 - Orifice scouring velocity
 - Pump longevity of life
 - Even dispersal across all terrain (10% differential)
- Accurate curves give accurate doses
- Drain field can fail due to improper pressurization

Pump Select (Non-Pressurized)

nput Parameters	C	Calculations	Minimum Pump Requirements	
Discharge Assembly Size (inches)	2.00 ᅌ	Transport Pipe Velocity before Valve (f/s)	0.9 Design Flow Rate (gpm)	10.0
Transport Length Before Valve (feet)	295	Transport Pipe Velocity after Valve (f/s)	0.0 Total Dynamic Head (feet)	5.8
Transport Pipe Class/Schedule	40 📀 F	rictional Head Losses		
Transport Line Size (inches)	2.00 ᅌ	Loss through Discharge (feet)	0.2	
Distributing Valve Model	None ᅌ	Loss in Transport Pipe before Valve (feet)	0.6	
Transport Length After Valve (feet)		Loss through Distributing Valve (feet)	0.0	
Transport Pipe Class/Schedule	40 0	Loss in transport pipe after valve (feet)	0.0	
Transport Line Size (inches)	2.00 \$	Losses through Flow Meter (feet)	0.0	
		'Add-on' Friction Losses (feet)	0.0	
Max Elevation Lift (feet)	5 P	Pipe Volumes		
Design Flow Rate (gpm)	10	Vol of Trans Line Before Valve (gals)	51.4	
Flow Meter (inches)	None ᅌ	Vol of Trans Line After Valve (gals)	0.0	
'Add-on' Friction Losses (feet)	0			

Inpu

Pump Select (Pressurized)

Parameters		Calculations		Static Heads	
Discharge Assembly Size (inches)	2.00 ᅌ	Minimum Flow Rate per Orifice (gpm)	0.43	Max Elevation Lift (feet)	5.0
nsport Length Before Valve (feet)	50.0	Number of Orifices per Zone	312	Residual Head at Last Orifice (feet)	5.0
Transport Pipe Class/Schedule	40 ᅌ	Total Flow Rate per Zone (gpm)	136.2	Pipe Volumes	
Transport Line Size (inches)	2.00 ᅌ	Number of Laterals per Zone	24	Vol of Trans Line Before Valve (gals)	8.7
Distributing Valve Model	None ᅌ	% Flow Differential 1st and Last Orifice	3.1	Vol of Trans Line After Valve (gals)	0.0
		Transport Pipe Velocity before Valve (f/s)	13.1	Volume of Manifold (gals)	0.9
ansport Length After Valve (feet)	0	Transport Pipe Velocity after Valve (f/s)	0.0	Volume of Laterals per zone (gals)	53.9
Transport Pipe Class/Schedule	40 0	Frictional Head Losses			07
Transport Line Size (inches)	2.00 0	Loss through Discharge (feet)	37.1	Total volume before valve (gals)	6.7
Max Elevation Lift (feet)	5.0	Loss in Transport Pipe before Valve (feet)	12.7	lotal volume after valve (gals)	54.0
Manifold Length (feet)	20	Loss through Distributing Valve (feet)	0.0	Minimum Pump Requirements	
Manifold Pipe Class/Schedule	40 ᅌ	Loss in transport pipe after valve (feet)	0.0	Design Flow Rate (gpm)	136.2
Manifold Line Size (inches)	1.00 ᅌ	Loss in Manifold (feet)	38.3	Total Dynamic Head (feet)	98.6
Number of Laterals per Cell	24	Loss in Laterals (feet)	0.4		
Lateral Length (feet)	50	Losses through Flow Meter (feet)	0.0		
Lateral Pipe Class/Schedule	40	'Add-on' Friction Losses (feet)	0.0		
Lateral Line Size (inches)	1.00				
Orifice Size (inches)	1/8				
Orifice Spacing (feet)	4 🗸				
sidual Head at Last Orifice (feet)	5 🗸				
Flow Meter (inches)	None ᅌ				
'Add-on' Friction Losses (feet)	0				

Orifice Equations

• Built into Pump Select

Good Curve

Hydraulic Modeling Examples

- Let's use our modeling tool Pump Select to work through the following examples.
 - Large gravity (D-Box) example
 - Large hydrosplitter example
 - Zoning with multiple pumps
 - Zoning a large system using indexing valves

Troubleshooting

Let's examine common issues

- Uneven dosing
- Erratic cycling & tracking issues
- Lateral servicing
- Valve operation & maintanence

Effect of a Large Dose In The Drainfield

Large dose fills all of the voids in the trench, eventually clogging and surfacing

Small dose spreads over the bottom of the trench, allowing the wastewater to infiltrate into the soil before the next dose is applied #24

Packed Bed Filter – Media Health Indicators

- Color Light to dark brown, not yellow
- Texture Gelatinous, not lard-like
- Odor Musty, not pungent
- Moisture Moist, not ponding*

Lateral Cleaning

- Use pump or jet hose
- Use a bottle brush

Residual Pressure & Pump Run Time

		RUN TIME				PRESSURE					
	Bos	Boss 300		300SI05		Boss 300		300\$105			
% BLOCKAGE	t	$\left(\begin{array}{c} t-t_{0} \\ t_{0} \end{array} ight) x 100\%$	t	$\left(\begin{array}{c} \textbf{t-to}\\ \textbf{to} \end{array}\right)$ x 100%		р	$\left(\begin{array}{c} \underline{p} - \underline{p}_0 \\ p_0 \end{array} \right) x 100\%$	р	$\begin{pmatrix} p-p_{o} \\ p_{o} \end{pmatrix}$ x 100%		
0%	50.8	0%	49.9	0%		58	0%	60.75	0%		
15%	52.5	3%	50	0%		75	29%	77.75	28%		
25%	54.3	7%	50.7	2%		91.5	58%	106.25	75%		
50%	63.0	24%	51.5	3%		160.8	177%	260.6	329%		

t = Run time in seconds

t_o = Initial run time (0% blockage)

p = Residual pressure in inches of H₂O

p₀ = Initial residual pressure (0% blockage)

Table 1. Run Time vs. Pressure

Orenco

Figure 1. System Sensitivity (residual pressure and dose time)

Valve Troubleshooting

- Erratic cycling or skipped cycles
- Stuck & doesn't cycle
- Capabilities of monitors

Zoning Options, Considerations & Pitfalls

Larger Sand Filter System Example

Distribution Valve Operation Example

Dispersal in Unconventional Soil

References

- *Hydraulic Loading Based Upon Wastewater Effluent Quality, in Proceedings:* 6th Northwest On-Site Wastewater Treatment Short Course Seattle, Washington.
- Soil Acceptance of Onsite Wastewater as Affected by Soil Morphology and Wastewater Quality, in Proceedings of the Seventh International Symposium on Individual and Small Community Sewage Systems, Atlanta, Georgia. American Society of Agricultural Engineers (ASAE). – Jerry Tyler

Large Pump System Design

Orenco Systems[®], Inc.

www.orenco.com